RESPONSIVE REALISTIC VIRTUAL AVATARS FOR THE METAVERSE

Peter Eisert, Fraunhofer HHI / Humboldt University Berlin

Virtual Humans as Intuitive Interfaces **Applications**

Virtual teaching

INVICTUS

Entertainment

SPIRIT

Immersive communication

Employee- and communication training

Virtual assistants

Digital sign language specialist

Fraunhofer HHI

Challenges

- Realism
- Authenticity
- Feeling of virtual presence
- Feeling of connectedness

Siren, 2018

Peter Eisert - Web3D

Realism vs. Interactivity

Models

- + Highly interactive, modifications possible
- Realism is expensive (motion & appearance)

CG Data

Images, videos, volumetric video...

- + Highly detailed and realistic
- No modification possible
 Real World Data

Volumetric Video

3D Representation with Free Viewpoint Rendaring

- Typically represented by textured meshes or point clouds
- Captured by multiple cameras or depth sensors
- Free viewpoint synthesis by rendering of dynamic 3D model

Volumetric Video Studio @ Fraunhofer HHI

- 32 cameras with 20 MPixels
- 150 light panels
 - matting
 - creation of arbitrary illumination
- 2 Tb/min of raw data

Reconstruction of Volumetric Video Sequences

Integration into VR Scenes

Virtual Humans Represented as NeRFs

Realtime Rendering of Video NeRFs

NeRF Sequence

From Volumetric Video to Virtual Humans

Input videos

Novel pose, Novel viewpoint, Novel facial expression

Magic box \rightarrow

Use Cases for Interactive Virtual Humans

Fitting SMPL for Adding Semantics

- Based on EasyMoCap (Multiview fitting)
- Extension of shape alignment of SMPL model to volumetric video

Kinematic Animation of Volumetric Video Animating the Real World

- Kinematic animation of scan data
- Generation of new poses
- Example: interactive gaze correction
- Standardized within MPEG

original

modified head pose

A. Hilsmann et al., IET CV 2020

VR Rendering of Volumetric Video with Head Pose Correction Holocaust Survivor Eva Umlauf

From Volumetric Video to Virtual Humans

Learning Animatable Representations from Volumetric Video

Volumetric Video with fitted SMPL model

Learning a Generative Model for Virtual Humans How to Represent Pose-dependent Appearance and Geometry

- Appearance : VV texture mapped to SMPL texture space
- Geometry: Displacement map (deviations between model and real geometry)
- Idea: Learn a generative model for these maps

Learning a Generative Model for Virtual Humans Training a Pose-dependent Decoder

Learning a Generative Model for Virtual Humans

Results

volumetric video

synthesized

model

Learning a Generative Model for Virtual Humans AR Visualization

SMPL Aligned NeRF [KMH23]

- Extended Surface aligned NeRF [XFM22]
- Mapping of canonical space to uv-height coordinates of SMPL model
- Remapping of coordinates with learned frame embeddings to account for alignment errors
- Can be animated via skeleton to unseen poses

Face Animation

Neural Face Representation

Hybrid Face Capture & Representation Learning

[W. Paier et al., CVMP 2020] [W. Paier et al., IET CV 2020]

Neural Face Representation

Variational Autoencoder

[W. Paier et al., IEEE CGA2021]

Neural Face Representation

Variational Autoencoder

[W. Paier et al., IEEE CGA2021]

Neural Rendering

Optimizing for Photorealism

[W. Paier et al., Graphical Models]

Neural Rendering

Optimizing for Photorealism

Background

Mesh-Based Rendering

Corr. Image

Refined Rendering

[W. Paier et al., Graphical Models]

Neural Rendering Comparison with SOTA Methods

FACIAL [1]

NHA [2]

4DFA [3]

OURS

ORIGINAL

- [1] Zhang et al., Synthesizing Dynamic Talking Face with Implicit Attribute Learning, ICCV 2021
- [2] Grassal et al., Neural head avatars from monocular RGB videos, CVPR 2022
- [3] Gafni et al., Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction, CVPR 2021

[W. Paier et al., Graphical Models]

Neural Face Representation Animation

Neural Face Animation

Speech-/text-driven Facial Animation

- Animation from input text
 - text converted to viseme sequence
 - output: animation parameter sequence (frame based)
 - ambiguous mapping of speaking style and emotions
- Animation from speech
 - speech recognition (and speech alignment)
 - animation from viseme sequence
 - Lip, eye and global head motion estimated from input

Neural Face Animation

Learning Dynamic Motion Space

- Sequence to sequence learning with a variational autoencoder
- Learns plausible parameter sequences and dynamics

Neural Animation

- Ground Truth
 Core Animation Network Animation Parameters
 - Viseme-IDs to animation parameters
- Style Encoder
 - Animation style space
 - Conditions core animation network
- Animation Prior
 - Regularizes eyes, head-pose

Neural Animation

- Ground Truth
 Core Animation Network Animation Parameters
 - Viseme-IDs to animation parameters
- Style Encoder
 - Animation style space
 - Conditions core animation network
- Animation Prior
 - Regularizes eyes, head-pose

Neural Animation

Comparison of Approaches

Facial [ZZH21]AD-NeRF [GCL21]Make it Talk [ZHS20]ours [PHE23]

Neural Face Animation

Speech Synthesis Results – Different Styles

Conclusions

- Virtual humans have gained a lot from deep learning and neural rendering
- Novel techniques like deep fakes, NeRFs, GANs, diffusion models,....
- Hybrid 3D approach
 - template model with skeleton and facial blendshapes for semantics and animation
 - neural synthesis and correction for realistic appearance
- Modelling of appearance and dynamics
- Novel applications for interactive films, games, training,....

Thanks to all the Collaborators

- Decai Chen
- Philipp Fechteler
- Ingo Feldmann
- Anna Hilsmann
- Wieland Morgenstern
- Wolfgang Paier
- Oliver Schreer
- Clemens Seibold
- Markus Worchel

Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

WE PUT SCIENCE INTO ACTION.

Contact:

Peter Eisert peter.eisert@hhi.fraunhofer.de +49 30 31002 614

Einsteinufer 37 10587 Berlin

SPONSORED BY THE

