Cognitive Aspects of Avatars Case Studies

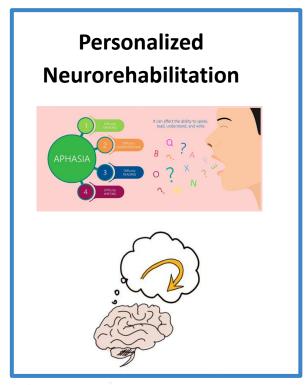
Arantza del Pozo Vicomtech

adelpozo@vicomtech.org

LUMINOUS Pilots

Personalized Neurorehabilitation

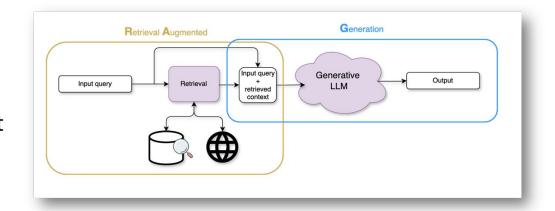
Health, Safety and Environment Training


Architectural Design Review

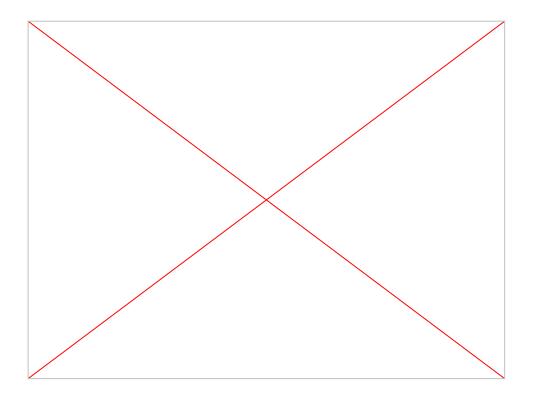
LUMINOUS Pilots

Health, Safety and Environment Training

Architectural Design Review


Metacognition Chatbot - problem

- Neurorehabilitation guidelines recommend applying metacognition strategy training to facilitate enhanced recovery and promote generalization to daily functioning
- Currently, metacognition is typically delivered through therapist guided task specific interventions
- Would it be feasible to administer personalized metacognitive strategy training linked to a digital therapeutics program?


Metacognition Chatbot - technical approach

- Development of a virtual assistant, expert on metacognition and psychoeducation.
- Knowledge sources have been compiled, together with relevant question-answer test sets for evaluation.
- A Retrieval Augmented
 Generation (RAG) prototype has
 been implemented on the
 compiled knowledge base.

Metacognition Chatbot - demo

Metacognition Chatbot - next steps

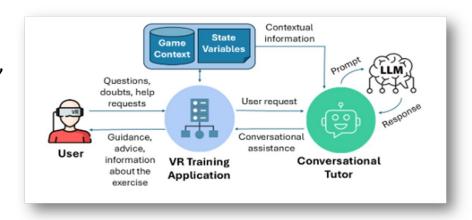
- Working on practical approaches to provide the Metacognition Chatbot with trustworthy general knowledge beyond the metacognition-specific knowledge sources
- Testing with real patients

LUMINOUS Pilots

Personalized Neurorehabilitation

Health, Safety and Environment Training

Architectural Design Review


Fire Extinguisher Assistant - problem

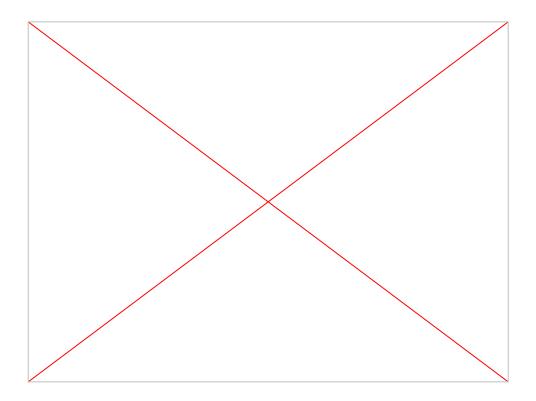
- Current support/assistance/guidance to the user during HSE Training:
 - Based on static hints
 - Limited help: it only repeats the hint for the current step
 - Basic interaction: a repeat button

Fire Extinguisher Assistant - technical approach

- First use of LLMs as virtual tutors in emergency response for VR training
- Address interaction gaps with dynamic, context-aware communication
- Integrate game context and state variables to enhance LLM response accuracy and relevance, achieving significant quality improvements

Fire Extinguisher Assistant - technical approach

Table 1: Performance (Mean ± StdDev) of Llama-3.3-70B across Zero- and Few-Shot settings for the different


prompt configurations. In bold, highest values per metric (including StdDev).

	BLEU	ROUGE-L F1	BERTScore R	BLEURT	G-Eval	Prompt	Correct	Partially Correct	Incorrect
Zero Shot					Zero Shot				
Vanilla	0.35 ± 0.07	9.58 ± 0.26	61.38 ± 0.27	48.18 ± 0.27	14.05 ± 0.79	Vanilla	7.2%	9%	83.8%
GC	0.74 ± 0.10	11.90 ± 0.26	64.09 ± 0.61	48.78 ± 0.42	38.99 ± 1.55	GC	28.1%	12%	59.9%
GC + SV	0.70 ± 0.09	14.64 ± 1.04	65.51 ± 0.58	50.52 ± 0.43	39.43 ± 1.82	GC + SV	33.1%	14.4%	52.5%
Few Shot						Few Shot			
Vanilla	0.61 ± 0.14	12.64 ± 0.64	63.76 ± 1.25	47.38 ± 1.02	32.22 ± 2.90	Vanilla	15.3%	13.6%	71.1%
GC	1.20 ± 0.29	13.76 ± 0.55	65.25 ± 0.84	48.84 ± 1.12	33.69 ± 2.16	GC	28.2%	16.2%	55.6%
GC + SV	1.19 ± 0.11	16.71 ± 1.42	66.77 ± 0.88	50.72 ± 0.73	43.83 ± 2.45	GC + SV	33.2%	16.2%	50.6%

Table 2: Human Evaluation results of Llama-3.3-70B across prompt configurations.

Fire Extinguisher Assistant - demo

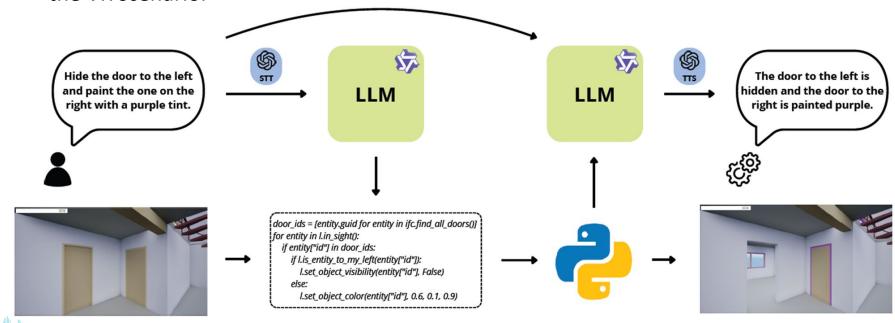
Fire Extinguisher Assistant - next steps

- Exploring ways to better model VR game variables and applying reasoning techniques to help LLMs better generalize over them
- Applying data augmentation techniques on the compiled datasets and exploiting the implemented system to generate sufficient training data to explore and compare the performance of fine-tuning approaches
- Testing with real users

LUMINOUS Pilots

Personalized Neurorehabilitation

Health, Safety and Environment Training


Architectural Design Review - problem

- Architectural design relies on 3D modeling procedures using Building Information Modeling (BIM) formats.
- BIM changes need to be implemented manually, lengthening the design process and making it difficult quick prototyping.

Architectural Design Review - technical approach

 Incorporating an LLM assistant able to answer queries and make changes directly in the VR scenario.

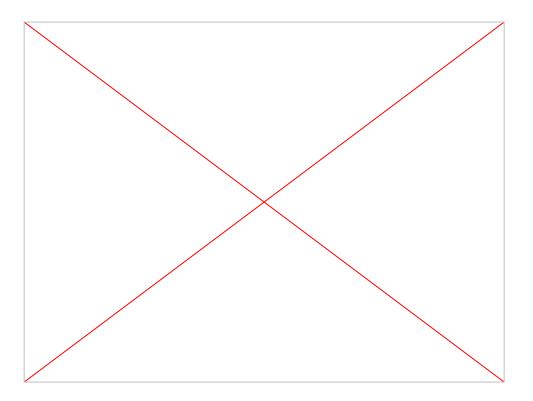
Architectural Design Review - technical approach

The prompt incorporates richer contextual information for correct coding:

- **Task definition**: Specifies what information is available and the output format.
- API documentation: Defines the available Python functions and classes.
- Initial State of the BIM: The initial configuration of the environment.
- **Few-shot examples**: A set of seven query-code pair examples.
- **User query**: The specific input provided by the user.

Architectural Design Review - technical approach

Model	Error	A a a suma av. A		
Model	Runtime	Semantic	Accuracy ↑	
Qwen2.5-1.5B	40.0	43.3	17.7	
Qwen2.5-7B	26.7	49.6	23.7	
Qwen2.5-32B	20.0	44.3	35.7	
Qwen2.5-72B	11.7	50.6	37.7	


Table 1: Percentage of instances that were correctly completed. Incorrect instances are separated between the ones that failed to finish the execution (runtime) and the ones with incorrect outcomes (semantic).

Model	Error Type ↓						
Model	No Change	Incorrect	Collateral	Other			
Qwen2.5-1.5B	53.3	14.3	5.7	9.0			
Qwen2.5-7B	45.7	24.7	2.3	4.3			
Qwen2.5-32B	29.7	27.0	2.3	5.3			
Qwen2.5-72B	21.0	35.7	1.0	4.3			

Table 2: Distribution of type of errors made by each model due to either runtime or semantic errors. Percentages are computed considering all instances to maintain consistency across models.

Architectural Design Review - demo

Architectural Design Review - next steps

- We plan to define a system that uses different submodules that focus on either interacting with the building or retrieving information, depending on the user's query.
- Testing with real users
- Porting of the system core to an AR headset

Questions?

